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ABSTRACT

The vaporization of a droplet, interacting with its neighbors in a non-

dilute spray environment is examined as well as a vaporization scaling law

established on the basis of a recently developed theory of renormalized

droplet. 1 The interacting droplet consists of a centrally located droplet and

its vapor bubble which is surrounded by a cloud of droplets. The distribution

of the droplets and the size of cloud are characterized by a pair-distribution

function. The vaporization of a droplet is retarded by the collective thermal

quenching, vapor concentration accumulated in outer sphere, and by the limited

percolative passages for mass, momentum and energy fluxes. The retardation is

scaled by the local collective interaction parameters; group combustion number

of renormalized droplet, droplet spacing, renormalization number and the local

ambient conditions. The numerical results of a selected case study reveal

that the vaporization correction factor falls from unity monotonically as the

group combustion number increases, and saturation is likely to occur when the

group combustion number reaches 35-40 with interdroplet spacing of 7.5

diameters and the environment temperature of 500 K. The scaling law suggests

that dense sprays can be classified into: (I) a "Diffusively Dense" cloud

characterized by uniform thermal quenching in the cloud, (2) a "Stratified

Dense" cloud characterized by a radial stratification in temperature by the
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differential thermal quenching of the cloud, or (3) a "Sharply Dense" cloud

marked by fine structure in the quasi-droplet cloud and the corresponding

variation in the correction factor due to the variation in the topological

structure of the cloud characterized by pair-distribution function of quasi-

droplets.
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i. Introduction

Increasing theoretical findings 1-13 and experimental evidence 14-18

attest the widely held belief that the short-range collective interaction 2-6,

11-13 among the neighboring droplets and the long-range interaction i, 7, 9

I0 with the droplets at distance, on a hydrodynamic scale, have profound

impact on the state of a droplet, i.e. the states of saturation, vaporization,

ignition, combustion and extinction, as well as the droplet interfacial

process rates in non-dilute cloud or spray environments. These collective

interactions, produced by local hydrodynamic and transport processes in a

complex topological environment, serve to control the percolative passage for

dispersing mass, momentum energy fluxes and the effective interfacial area for

the property exchange processes. These interactions result in the collective

thermal quenching, the accumulation of vaporizing species and the tendency for

stagnating the microscale local Stefan flow and mean flow through dynamic

equilibration between the two phases.

Review of the current theories of collective interactions including:

Group Vaporization and Combustion I, 7, I0 (GVC), Discrete Droplet Model (DDM)

2, 3, 5 and Droplet In Bubble (DIB) 4, 8 reveals two major theoretical

deficiencies in the theory of short-range interaction and droplet rate

processes at this juncture. These are: (I) the lack of the fundamental

concepts and the mechanisms interlinking small scale discrete droplet

processes with a large scale quasi-continuum flow of a non-dilute cloud or a

spray, and (2) the incomplete understanding of complex interfacial processes,

finite rate reaction, turbulence and transport processes that occur in the

vicinity of each droplet. The first issue compels the current research of

non-dilute sprays to proceed with two rival approaches; GVC, that primarily
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deals with the long-range interaction, thus neglecting small scale resolution,

and DDM, which focuses attention on the detailed behavior of discrete droplets

in well-ordered droplet assemblies, thereby requiring a laborious compu-

ational procedure involving a large number of droplets encountered in

practical sprays.

The alternative approach, adopting a continuous spray model supplemented

by realistic droplet laws, appears the compromised mean of the prediction of

non-dilute spray. A recent study of Tishkoff 4 on the numerically correlated

vaporization correction factor derived from the DIB model demonstrates the

viability of such combined approach to complement modern non-dilute spray

calculations formulated on either Eulerian-Eulerian or Eulerian-Lagrangian

framework. It must be mentioned, however, that an attempt to deduce an

improved droplet vaporization law from the results of existing DDM met with

difficulties due to the geniune lack of a self-consistent criterion of

"droplet environment" whereupon the gas properties such as the temperature and

concentration of vapor species, are inserted in the droplet law for the

determination of the vaporization rates. A universal theory of short-range

interaction and a set of comprehensive laws of droplet rate processes remain

as the major unsolved issues in the contemporary theory of non-dilute sprays

which has been the central theme of research 12, 13 conducted. The objectives

of this paper are to present the basic concepts, theoretical approaches and

the results of Renormalized Droplet (RND) theory to establish vaporization

laws for droplets in a stationary non-dilute cloud environment.

The paper begins with the descriptions of droplet models and theories, in

section 2, to clarify basic concepts and definitions of "droplet," adopted in

modern spray theory. The structure, model and mathematical analysis of RND
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are described in Section 3. The results of numerically predicted RND

structure, vaporization correction factor and their dependenceon collective

interactive parameters are presented in Section 4.

2. Droplet Models: Topological Properties and Modeling

2.1 Elemental Model

Three fundamental topological properties that play basic roles in

interaction phenomena between the droplet under investigation, termed the

"test droplet", and its neighbors, i.e. "field droplets," are; (I)

"graininess" or "discreteness" of a droplet, (2) "covolume" or "evacuated

volume" of a droplet, and (3) "localization" of a droplet relative to a

reference point. Basic droplet models which attempt to capture properties of

the droplet to a desired level of accuracy, are classified into three types

according to the level of sophistication in the characterization of the

topological features, as summarized in Table I. First, the "natural droplet

model" which characterizes a droplet by its true geometrical shape, size and

location, simulates all the topological properties described above.
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Table 1

Droplet Models

...... Q_.ast-Droplet Model .....

Droplet Natural Non-Uniformly Uniformly Point Source

ProPerties ..... Drop Model ...... Smeared Drop LSheared prop- _ Model .....

Graininess Shar_* Diffuse** No Sinj_ular

Covolume Sharp No No No

Localization _ Sharp .Di_ffu_se............. __No_____ Si_n__ar

*Sharp properties caused by phase discontinuity

**Diffuse properties featured by the absence of phase discontinuity

The natural droplet model provides a sharp droplet configuration required

for the predictions of microscale flow structure, and results from a

combination of convective and Stefan flows, and interfacial process rates of

the test droplet. The solution is given by solving Dirichelt boundary value

problems associated with conservation equations and a well defined set of

physical boundaries formed by the interface of droplets.

The second type of model, i.e. "quasi-smeared droplet," describes a

droplet by a medium spreading through the space. The droplet thus coexists

with the host medium without apparent phase discontinuity. The models in this

category are further divided into "uniformly" and "non-uniformly" smeared

droplets, Fig. I. In the latter model, the location and spatial extension of

droplets are depicted by a joint probability distribution function. The

"graininess" and "localization" of droplets are therefore partially

characterized by the joint probability function rather than the phase

discontinuities as in the case of the natural drop model.

"The uniformly smeared droplet model" which has been adopted in the

majority of two-phase flow and spray theories is a special case with a uniform

distribution of the joint probability with its numerical value equals to unity

throughout the space. In this model, "graininess" and "localization," are
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absent. Becauseof the lack of the basic topological properties, these quasi-

droplet models are unable to be used for the determination of the droplet

bound flow field and droplet laws. However, whenappropriate droplet laws are

provided to describe the interfacial processes rates, the flow structure of a

farfield can be predicted with an acceptable accuracy by a quasi-two phase

approach that is simpler than the Dirichelt boundary value problems.

The third model is a "point source model" which uses a mathematical

singularity to characterize the "location" and a "singular graininess" of a

droplet in a dilute spray with a large spacing, i.e., the ratio of spacing to

the droplet size is muchgreater than unity. Like a "quasi-droplet model",

the "point source model" fails to provide a satisfactory near-field structure

required for the prediction of the rates of interfacial processes, but the

model offers a simple mathematical theory for the prediction of far field

solutions.

2.1.2 Composite Model

Although a specific elemental model has been frequently used in the

analysis of single droplet, or many-droplet problems (e.g. natural droplet

model in DDM and DIB, uniformly smeared droplet in GVC), the potential

advantages of the simultaneous use of two or more than two elemental models

has aot been fully exploited.

A composite modeling technique permits a strategic selection of a desired

elemental model in a certain selected region and an alternative model in

another region to enhance the modeling flexibility and the simplicity in

analysis. The choice of an elemental model is determined by the type of the

flow field data and accuracy required in each region. For example in RND
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theory, the test droplet is modeled by a "natural droplet model" to facilitate

the determination of the near flow field, which depends on the detailed

geometry of the test droplet, and the flow disturbance created by the

neighboring field droplets. On the other hand, "field droplets" are modeled

by "non-uniformly smeared droplet" which are distributed in the neighborhood

of the test droplet. The distribution of these quasi-droplets is described by

a joint probability function to simulate localization and graininess of the

quasi-droplets. This composite model provides a simple, self-consistent and

useful analytical method of treating the interracial phenomenaof a test

droplet interacting with its neighbors. The details of the application of

composite model in RNDis described in the remaining part of this section and

the next section.

2.2 Theories of Droplet: Canonical and Renormalized Representation of a

Droplet Under Short Range Interaction.

"The Theory of Droplet" concerns itself with interfacial phenomena and

the process rates of a test droplet in isolation or under the influence of the

collective interaction of field droplets. A representative analytical

approach for the former is the single droplet theory, and for the latter case,

the approaches are DIB and RND models. Since the latter problem concerns

collective interaction between a test droplet and field droplets, the nature

of the problems and the theoretical procedures are, in general, similar to

that of "many droplet problems". However, an important distinction between

the two theories is that the "droplet theory" aims to establish the rate of an

interfacial process of a test droplet on the framework of "the minimum-sized

many-droplet system" that includes the smallest number, Nmin, of droplets
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i.e., a test droplet and Nmin-I field droplets confined in, "the minimum sized

region", i.e. _nin region. The requirements of "the minimum number of

droplets" in "the minimum region" are imposed in RND theory so that the

droplet laws, deduced from such a minimum droplet system, can be explicitly

formulated in terms of the self-consistently defined "local properties" of a

spray flow field. This basic feature of "local representation," is essential

in modern spray calculations that use local droplet laws. In contrast to the

theory of renormalized droplet, the "cluster" model 8'II treats a droplet

system with an arbitrary number of droplets in a finite region. Thus, the

model is appropriate for dealing with a partial or complete domain of a spray

by an approach that is different from the conventional spray theory.

2.2.1 Canonical Droplet Theory4: CDT

The DIB 4 which consists of a natural droplet and its Wigner-Seitz bubble,

has two fundamental properties. Firstly, a high degree of symmetry preserved

in the DIB's periodical droplet assembly inhibits the transports of mass,

momentum and energy transports among the neighbor droplets. Thus, DIB

portrays a thermo-chemically closed adiabatic system with respect to neighbor

droplets. Secondly, the strength of the interaction between the droplet and

its bubble is determined by the size of the bubble which has the radius equals

to half of the droplet spacing. When the droplet separation becomes

infinitely large, the predicted vaporization rate approaches to that of an

isolated droplet, as expected.

Because of these two unique features of the DIB which may be regarded as

a reference model of a short-range interaction, the theory will be termed

"canonical droplet theory" (CDT). The theory provides a basis of RND model

described in the following subsection.
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2.2.2 Renormallzed Droplet Theory

Since the canonical theory treats the interfacial processes of a droplet

in a hypothetical, well ordered droplet lattice, the validity of the canonical

droplet law is questionable when applied to practical sprays with disordered

droplet distributions. Needless to say, the adiabaticity and closure of the

test droplet relative to its neighbor also break down in practical sprays.

Another theoretical deficiency of DIB is the lack of the geometrical

compatibility of the "environment" with that of droplet environment in spray

theory. In CDT, the edge of a bubble has been adopted as the environment,

though such choice is not necessarily the unique alternative, and the gas

temperature or species concentration is used for the determination of the

vaporization rate and droplet transient heating rate. However, in a spray

calculation, the local average gas phase temperature of multi-phase flow is

used for the determination of droplet process rates. Clearly, the environment

of a canonical droplet does not coincide with that of a spray. Such

incompatibility prohibits the encoding of the droplet law, derived by DIB,

into a spray calculation unless an explicit link between two environmental

properties, i.e., DIB vs smeared droplet model adopted in a conventional

multi-phase continuum spray is provided.

The RND theory provides a rigorous theoretical procedure that removes the

major shortcomings of the canonical theory and provides encodable droplet laws

by the applications of (I) composite droplet modeling technique and (2) the

minimum sized many-droplet system, as described in the following section.
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]. Renormalized Droplet (RND)

3.1 Structure of Model

The theory of renormalization 12 portrays a test droplet interacting with

its neighboring field droplets by a composite "dressed or clothed" droplet

model shown in Fig. 2. Two principal structural elements of RND are (I) a

Droplet-In-Bubble (DIB) and (2) a cloud of non-uniformly smeared droplets

which functions as an external clothing for the DIB. The distribution of the

quasi-droplet is described by the pair-distribution function representing the

joint probabiltiy of finding a test droplet and its neighbor at a separation

s. The pair-distribution function vanishes in the immediate vincinity of the

bubble, representing the evacuated volume effect of droplets, and then

increases rather rapidly to a value greater than unity at the radial distance

comparable to a mean droplet spacing. This first high droplet density region

populated by the nearest neighbor droplets is termed the "first coordination

shell." The population peaks of the "second and higher order coordination

shells" lose their sharpness as they merge with one another and are ultimately

lost in a continuous environment where the pair distribution function

approaches to unity. The size of the transition sphere, Rts, defined as the

radial location where the pair distribution function is 0.99, depends on the

droplet size, spacing and arrangement. The ratio of the size of the

transition sphere, Rts , to the characteristic hydrodynamic scale, L, is

typically much smaller than unity, and thus the sphere degenerates into a

point in the limit when Rts/L vanishes. Accordingly, the average properties

of the gas over the transition sphere approach to the local properties of the

continuum flow as the limit Rts/L goes to zero. This "correspondence

hypothesis" and the interlinking transition sphere constitute the two key
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factors for the determination of the droplet process rate by the local gas

properties of the continuum flow field. In the present analysis, RNDis

assumed to be spherically symmetric, and non-reacting. Transport properties

are constant and the Lewis number is unity.

The criterion of a quasi-steady state is a muchmore complex issue than

that of a single droplet because of the multi-scale and multi-time phenomena

linked with massand energy transport in typical RND. In general, the quasi-

steady state assumption is valid when (I) the largest characteristic diffusion

and conduction times associated with the transition sphere is much smaller

than the life time of any droplet in the cloud, (2) no droplet in the

transition sphere is in the state of transient heating, and (3) no gas phase

region is experiencing an initial or a terminal transient process. The

effects of transient processes, and the validity or the limitation of the

quasi-steady theory in a practical spray are discussed in Section 5. Detailed

time-dependent analysis of transient processes in RND,which will be presented

as Part II in the future, reveal that RNDis found in somedense sprays to

exhibit only a brief or finite period of quasi-equilibrium state.

Additionally, RNDexhibits dynamic saturation in time scales comparable to the

characteristic diffusion time in the canonical bubble when the local group

combustion numberexceeds a critical value.

3.2 Mathematical Analysis

Non-dimensional equations governing RND are formulated separately for the

inner DIB region and an external quasi-droplet cloud, respectively, as

follows.

1 d 2d_i

2 an (n _-_ -) = 0 i_ n _ nc ° (I)
n
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and ^
1 d d_i ^
2 dn (n2 _--) = GsgpBi

n
with

n <n<n
co -- -- ts

(2)

_m = pu (3)

I _ F_ aF d aF

\_TI = _m a T -_ _ a T

(4)

where n = r/r (0), p and v are non-dimensionalized by the gas density, and

3

velocity on the droplet surface, respectively, Gs = 4#nr o , g is a pair

distribution function, _ is the vaporization shape factor defined by (12),

_. are the fluxes of various properties; 1_ss for i = m, fuel vapor for i=F
i

and thermal energy for i=T, and ^ refers to the properties pertaining to an

outer region. The definitions of properties a i and constants B i are

summarized in Table 2.

Table 2

Schvab-Zeldovichs Variables and Constants

i I a.
1

M [ -(yf/WF_ F )

T I f_bCpdT/q
_J

^

1 i

SF = - (WFVF)-1

YF = L/q

The system of Eqs. (I)-(4) is integrated by a repeated quadrature. The

constants of integration are determined from the conditions of the
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impermeability of the gaseous species on the droplet surface and the balance

of the heat conducted to the droplet with the latent heat of the

vaporization. The integration gives the following vaporization laws

£n (i + _Tco )

4_0 Dr£ (o) ¥F
_(0) = (5)

1 - _co

or

£n (1 + CtFc° - aFt,)

r_pDr_ (o) _Fg_ - eF
(6)

_(o) :-, i -
co

whe re

These laws, which agree with those obtained by Tishkoff 4, are valid for

any value of _co' provided the bubble contains no droplet other than the test

droplet. This standard law will be termed "canonical vaporization law," the

spherical bubble surface will be identified by "canonical environment" and the

bubble temperature by "canonical temperature." In contrast to what is

described above, an alternative law in which the vaporization rate is

determined by the gas temperature on the surface of the transition sphere (see

Fig. 2) will be called "renormalized vaporization law," the surface of

transition sphere is "renormalized environment" and temperature on the surface

is the "renormalized temperature" which is numerically equal to the local gas

temperature of the continuum flow field.
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Renormallzed Droplet Law

Since the continuum theory of sprays predicts the local gas temperature

but not the canonical temperature, the canonical vaporization laws (5) and (6)

cannot be used in spray calculation as previously described. The alternative

proposed in this paper is to use a renormallzed vaporization law. The

renormalized law is described in this subsection. By adopting a mathematical

procedure involving appropriate linear combinations of Eq. (2) governing

_m' _F and _JT' one obtains t_o homogeneous equations governing
^

aT + YF and a F - E F. These two equations are integrated and joined with the

inner solutions on the surface of the canonical bubble. The resulting

solutions are glven by

^ ^

aT + YF aF - eF
^ ^

a + YF eFTts _Fts

2
nts

[ I 1 (I + Gsl g_E2d_)dn '}= exp { - _ _ .
n 2 n

co

(7)

In order to obtain the renormalization laws, one first determines

^

aTc ° and eFco by replacing the n appearing in the lower limit of the

integration of Eq. (7) by n . Subsequently, by substituting the resulting
co

^ ^

expressions of aTc ° and eFc ° in Eq. (5) and (6) one arrives at the following

renormalized vaporization laws:

^

eTts)
_(o) = 4_pDrz(o)C v in(l +-_-f- (8)

_(o) = 4_pDr£(o)C v in (i +

^ ^

aFts-^ aFt) (9)

aF_ - eF
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where C is the vaporization correction factor calculated as follows
V

C
V

= [ I - _ts + G rnts
-1

(IO)

in which

-2
K(nl_) = n _2g(F.) (11)

_n(n)

_(o)

A

4_pDr£_n [ 1+-_(rl_ ) ]
7 F

6(0) [1-_ c (n)]

(12)

where _F£ is given by

aFt =

^ ^

aFts + _Tts + eF

^

_Tts + ¥F

(13)

The vaporization laws (8) and (9) remain incomplete until the distribution of

is provided. The determination of _ requires the knowledge of the

^

canonical temperature _Tc(_) of a quasi-droplet located at n, see Eq. (12). A

^

theoretical procedure of the determination of _Tc(n) in terms of the local gas

_T(n), is described in the following.phase temperature,

Mean Canonical Bubble Temperature

of a Field Droplet

In the analytical estimate of a mean canonical temperature one assumes

that each field droplet in the transition sphere of RND has a canonical

structure, i.e., the temperature and concentration profiles are those given by
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canonical model. Consider a canonical field droplet located at the field

point, n , measuredfrom the center of the test droplet. Let y be the radial

location of an arbitrary point within the bubble of the field droplet measured

from the center of the field droplet. Then, according to the result of the

DIB model, the temperature distribution in the bubble of the canonical field

droplet is given by

_T (n'y) = YF {exp[ i-- (I - I)-I]}
_(n) Y

whe re

(14)

o = 4 _ p D r_(n)

^

Additionally, the canonical temperature, =Tc(n) is obtained by replacing

y in Eq. (14) by Yc; i.e., the radius of the bubble. The result is

^

aTc(n) -= aT(n,Yc) = YF{exp [_I (i - i___)] - 1}
Yc

(15)

Since the local gas temperature _T(n) equals to the volume averaged mean gas

temperature in the bubble of a field droplet, one writes

1 _c =T(n,y)y dy(n): v
c (16)

where V c is the non-dimensional volume of the bubble given by
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V 1 3
c = "3 (Yc -I)

^ ^

In order to express _Tc(n) in terms of eT(n), one inroduces the

correlation function _ as

A

%(q,yc ) = eTc(n,yc)/_T(n)
(17)

By comparing Eqs. (16) and (17), one identifies %(n,yc) as follows

x(n,y c) =

{exp[T_l-_(l i-_)-I]-1} (yc3 -I)
y

{__!L ±)3 [YC{exp (I- ] -I } y2dy
o(n)d_ Y (18)

Thus, the non-dimensional vaporization rate, _, of a field droplet is given by

m(n ) 4_pDr£

_(o) _(o) 1-_c(n)

(19)

1/3

where _c(n):_co_(n)g(n)
^ ^

By substituting (19) into Eq. (2), for ,i=_T , one obtains the

equation.

(20)

following

_2_ 2 dj__
2d_r-_-+ - Gn dn s

£n [ l-X+%e _ ]

eg 1__cT_) : o
(21)

where

83



^- d_m - _n (i+---- (22)

dn YF

In the ensuing analysis, % will be assumed to be unity. This corresponds

to droplet vaporization with a high transfer number. The general case,

_*I, can be solved by an iterative analysis with a guessed value of o(n) to

calculate approximate _ from Eq. (21). The iteration will continue until the

vaporization rate prediced from the iterative solution converages to the

guessed value of o. It is expected that the temperature rise in the radial

direction is faster when I>I. Details of the general case will be reported in

the future.

The last step required for determining _ which appears in the scaling law

is to determine % as a function of n. With _=1, one can show that the

expression for _ which satisfies %=%co at n = _co and %=_ts at n=nts is given

by a linear combination of two homogeneous solutions W I and W2, that satisfy

dw I dW 2

the canonical boundary conditions; Wl(nco)=l, d-_-(nco)=O and _-_-n(nco) = I,

%ts W2(n)
= _ }

_(n) _c°{WI(_) + [_--_o Wl(_ts)] W2(nts)

(23)

where _co' the characteristic value, is determined in terms of _ts as

follows.

By equating the vaporization rate in the canonical form (5) and

renormalized form (3) and by using the definition of _ given by Eq. (22), one

obtains

4_0Dr_ (°) 4_oDr_ (°) _ts
(24)

m(o) = l-_co _co = rnts n
l-_ts + Gs _n fn K(nl$l_(_ldEdn

CO CO

84



where U(() = 8(_)
t-(co

I-_ cn

¢(_)
(25)

and

e($) = r (_)/r_o
(26)

On substituting the expression of ¢(q) given by Eq. (23) into RHS of Eq.

(25) and by inserting the resulting expression in the u-term appears in the

denominator of the Eq. (24), one obtains

_co "Qco

- = A(G ,nts )
Cts _Qts s'nco

(27)

where

i l__c ° W2(_)
l__ts_Gs ts i K(_l_)O(_)l-_ W2(nts _- d_d_

: co co (_) (28)

I_$ ts +Gs 7ts q l-_co Wl(ntS)
f K(DI_)e(_)I__($) [WI(_) W2(_ts) W2(E)]d_dn

_co nco

Finally, the scaling factor Eq. (I0) can be expressed in terms of

W 1 and W 2 as follows

Dts (hcoD l-_c°Cv = I - _ts + Gs f_co " K(n}_)0(_) i-_
[Wl(_) + BW2(E)]d_d n }-I
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_here

1
B = [ _- - Wl(nts)]/W2(nts)

4 _merical Results

A numerical analysis will examine the structure and scaling laws oE RND

and their dependence on the principal collective interaction parameters of a

stationary cloud of n-octane droplets with the following fuel properties;

01=707 Kg/m 3 Tb = 398.7 k, L = 71.7 Kcal/Kg, and WF= 114.14 Kg/kg-mole.

(I) Pair-Distribution Function and Canonical Bubble

In the absence of experimental data, a pair-distribution function is

constructed on the basis of the geometrical distribution of molecules in a

dense liquid. The following two parameter function is adopted for the

numerical calculation.

g(n) = 1 + a exp(-bn) cos (2_nco) , 2nco < _ --<_ts (29)

where a and b are constants to be determined from the experimental data. In

the present analysis a = 1.8, b = 0.65 are chosen. The resulting distribution

patterns are shown in Fig. 3. The corresponding signatures of the inverse of

the radius of canonical bubbles with

4.

(2) Vaporization Shape Factor

= 5, i0, and 15 are shown in Fig.
co

A pronounced increase of u in the radial direction is observed for a

smaller value of droplet spacing, i.e. _co = 7.5 in Fig. 5. The ratio of the

vaporization rate of the droplet located at the first coordination shell, for
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the case of _co = 7.5, is approximately 5% of the corresponding value of RND

with n = 15. This trend of a higher increasing rate of _ at smaller
co

canonical bubble radii, or droplet spacing, is a common feature for small

droplet spacing. This is confirmed for the cases characterized by pair-

distribution functions with different values of a and b. The results suggest

that "_ -stratification" is a unique feature of RND in non-dilute clouds or

spray.

(3) Temperature Distribution

High _- stratification at smaller droplet spacing, as illustrated in Fig.

5 is due to the steep radial temperature gradients in the transition sphere,

shown in Fig. (6). Indeed, the comparison of "_- T stratifications" suggest

that (i) the rapid vaporization in outer layer of the cloud collectively

quench the environment and thereby reduce the vaporization of the test droplet

and (2) the increase in qts at a fixed droplet spacing tends to reduce the

inward heat transfer rate and thus suppresses the vaporization of the test

droplet.

(4) Vaporization Rate - Correction Factor

The correction factors of RNDs for three selected values of _co' Fig. 7,

are found to decrease monotonically as the group combustion number of RND

increases. Saturation is projected to occur when GRN=30~40 with nco = 7.5.

While the group combustion number is a primary factor controlling the

magnitude of Cv, Fig. 7 shows a small variation in the correction factor for

two RND's which have the same group combustion number but different

renormalization number, B = nts/_co.
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4 Discussion

Scaling Law with Linear Stratification Node1

In order to facilitate the practical application of the scaling law, the cor-

rection factor is integrated by adopting the following functional form of g u

gu = _Kln

where K 1 is a stratification coefficient, and g_ is the mean value of the

weighted vaporization shape factor. The correction factor predicted by the

linear stratification model described above, is given by

C = { i-_ +GRN[(I- p_)(l+ 1 2 ) + I ml
±

v ts B B2 _ Klnts(l-
)(1+ i i)

+ s--_- s3 ]} (30)

where GRN= _ Gsn2sgU.

SPRAY CLASSIFICATION

Numerical assessment of the scaling law suggests the following structural

classification of non-dilute sprays.

I. Diffusively Dense Cloud

In a moderately dense cloud, RND is expected to have a large transition

sphere that has no U- stratification.

attributed to uniform thermal quenching.

described by the group combustion alone:

The reduction in the vaporization is

The correction factor given below is

-1

Cv : (I + GRN) (31)

C- 2__



2. Densely Stratified Cloud

This cloud is featured with a strong stratification in a transition

sphere that causes an intense collective quenching and a reduction in the

vaporization rate of the test droplet. The renormalization number _ts/_co is

larger than unity so that the correction factor is given by

C =[1-
v

1

_ts + GRN(I +-2 Klnts)]

-I
(32)

3. Sharply Dense Cloud - Fine Structure

When the coordination shells contain the largest possible number of the

droplet so that the renormalization number is not excessively large compared

with unity, the correction factor depends on all the collective parameters:

and n . Two sharply dense clouds with the same group combustion
GRN' nts/nco ts

number will exhibit structural variation when the renormalization number is

different.

5 Conclusion

The present theory portrays a droplet interacting with its neighbors by a

minimum sized "dressed" droplet structured with a centrally located droplet

and its bubble, e.g. Droplet-in-Bubble, surrounded by a quasi-droplet cloud

spreading through a transition sphere. The distribution of quasi-droplets and

the size of the cloud are described by a pair distribution function. The

introduction of the transition sphere and the correspondence hypothesis

postulating the equivalence between the average gas properties on the

transition sphere with the gas properties of the continuum flow field, as the

limit Rts /L goes to zero, constitutes the fundamental link between the

discrete droplet dominated region with that of the surrounding continuum
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flow. This feature provides the basis of the theory of short-range

interaction and droplet rate processes.

The vaporization scaling law reveals that the droplet vaporization is

retarded primarily by the collective thermal quenching and the formation of

high vapor concentration in the transition sphere. The retardation is scaled

by combined topological-thermochemical parameters: the group combustion

number, renormalization numbe_and droplet spacing. The scaling laws suggest

that non-dilute clouds or sprays can be classified into: (I) "Diffusively

Dense" clouds in which the vaporization reduction is attributed to the effects

of uniform thermal quenching that can be scaled by the group combustion number

alone; (2) "Densely Stratified" clouds, with marked radial stratification due

to the large temperature gradient which exists in the transition sphere; and

(3) "Sharply Dense" clouds, with a relatively large canonical bubble, and

radial stratification so that the scaling law dependson GRN, nts and _.

Selected case studies show that the correction factor falls monotonically as

the group combustion number increases and the saturation is expected to occur

when the GRNis of the order of 30 ~ 40, with the droplet spacing of

approximately 7.5 times of the droplet size and environment temperature of

500 K.

Finally, the validity of quasi-steady (Q-S) approximation is examined by

comparing the relative magnitude of the characteristic time, tdiff ., of

difusion through the transition sphere and the life time, tlife , of RND. By

adopting the renormalized vaporization laws, Eqs. (8) and (I0), and a standard

diffusion time for the transition sphere of RND, one concludes that the Q-S

approximation is valid whenthe following inequality is satisfied
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2 _ _n(l + B)tdif. = 2Cv_ts
tlife

(33)

where B = C (T-Tb)/L.
P

With 0 ~103kg/m 3 0~I kg/n 3, T-Tb~I000K l_102Kcal/kg

tdiff 10-4.
C ~0.5 Kcal/Kg-K the numerical values of ------ is 5 x
P tlif £

Alternatively, by using the asymptotic form of Cv for high GRN, deduced

from Eq. (30) i.e. Cv~GR_ (_ Gs_
g_)-I= , one transforms Eq. (33) into the

' ' 6 tS

following form

g_G > > G (34)
s s

where G =12 0__ in (I + B)

s 0£

Recalling that Gs =4_nr$o is equal to a third of the void fraction, and

g_~0(1), one concludes that the Q-S approximation is valid in high G-sprays

when the void fraction exceeds a third of the values of G . For typical values
s

of O_ p,T-Tb, C and L given above, Eq. (34) reduces to' p

3 (35)
nr_o > > 4x10 -4

For example, with SMD=IOOB , the Q-S approximation is valid when n is greater

than 3200 drops/cc, whereas for SMD=200_, the corresponding number density is

400 drops/cc.

The criterion (33) or its alternative form can be encoded in a spray

numerical code to test the validity of Q-S assumption at each point of a spray
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flow field. When the approximation is invalid, an alternative transient

droplet laws should be used to determine the interfacial processes. Note that

such droplet transient processes should be able to predict the change in the

nature of interracial processes. For example, a vaporizing droplet may reach

the state of saturation when the droplet spacing falls below the critical

value or when the thermal shielding retards the heat flux to the droplet.
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FIG. 2 Structure of renormalized droplet in

non-dilute spray and the _tic of quasi-

drc_let cloud in transition sphere.
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